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the flexibility and ease of modification or adaptability to
specific problems are often compromised.Two versions of flux corrected transport and two versions of total

variation diminishing schemes are tested for several one- and two- In this paper we take a rather pragmatic approach and
dimensional hydrodynamic and magnetohydrodynamic problems. test some of the simpler general methods on various nu-
Two of the schemes, YDFCT and TVDLF are tested extensively for merical problems. Robustness, numerical diffusivity, pro-
the first time. The results give an insight into the limitations of

duction of spurious oscillations and computational effi-the methods, their relative strengths and weaknesses. Some subtle
ciency are all taken into account; thus we hope to gainpoints of the algorithms and the effects of selecting different options

for certain methods are emphasised. Q 1996 Academic Press, Inc. some balanced view on the properties of different schemes
in different situations.

The basic concept behind all high-resolution numerical
1. INTRODUCTION schemes is to use a high-order scheme as much as possible

and in the meantime to add intelligently sufficient dissipa-
Many interesting and important problems arise in astro- tion in the localized steep gradient regions to eliminate

physical, solar, magnetospheric, and thermonuclear re- possible numerical oscillations. It is this adaptive dissipa-
search which can be described by the system of magnetohy- tion property that distinguishes the modern and classical
drodynamic (MHD) equations. The complexity of these numerical schemes. An early attempt toward developing
problems often prohibits an analytical investigation and/ high-order monotonic schemes was made by Boris and
or only some of the variables can be observed or measured Book [9], who proposed the flux-corrected transport (FCT)
experimentally; thus the researcher has to rely on numeri- techniques. This procedure adds high-order (‘‘anti-diffu-
cal simulations. In many situations, MHD flows develop sive’’) terms to the stable but diffusive low-order solution
steep gradients, shock waves, contact discontinuities, and and a limiter ensures that no new minima or maxima with
shear layers that can be best resolved by modern high respect to the low-order solution are created. The concept
resolution schemes. Such schemes are well established for of total variation diminishing (TVD) schemes was intro-
the modeling of hydrodynamic (HD) flows (see, e.g., duced by Harten [10]. For certain types of equations these
Hirsch [1], LeVeque [2], or Fletcher [3]), but the extension algorithms can ensure that the total variation of the flow
of these schemes to the system of MHD equations has variables does not increase with time; thus no spurious
only recently begun by Ryu and Jones [4, 5], Balsara et al. numerical oscillations are generated. The solution can be
[6], Dai and Woodward [7], Zachary et al. [8], and others second- or third-order accurate in the smooth parts of
referenced by them. The main reason for this delay is that the solution, but the scheme ‘‘switches’’ to first order at
the structure of the MHD equations is more complex than extrema. TVD schemes are often based on approximate
that of the HD equations, thus the relatively simple HD or exact Riemann solvers, but, as Yee [11] observed, a
schemes become rather complicated and often need modi- high-order TVD Lax–Friedrichs (TVDLF) scheme can be
fications to handle accurately the degeneracies and instabil- formulated without using any Riemann solver. Although
ities of the MHD equations. In our opinion, the complexity the simplicity of the TVDLF formulation is very appealing,
of some of the latest MHD schemes make their implemen- it seems to have received little attention (Cockburn et al.
tation prohibitively difficult for the nonspecialized re- [12]) especially in the context of MHD problems (Barmin
searcher. In an effort to make the algorithms accurate, et al. [13]). The more accurate, but more complex, TVD

scheme with the local characteristics approach (Yee [11])
will serve as a basis for comparison.1 E-mail: toth@fys.ruu.nl.

2 E-mail: odstrcil@asu.cas.cz. It is important to note that the monotonicity of the FCT
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algorithm or the TVD property of the TVD schemes has of the magnetic field. The conservative variables U are r,
the momentum density rv, the total energy density e, andnever been proved for a system of nonlinear equations,

like the MHD equations; thus for MHD problems the B. The conservative system of ideal MHD equations is
desired features of the schemes have to be confirmed by
numerical tests. This fact also prompts a rather humble 

t
(r) 1 = ? (rv) 5 0, (1)approach when we modify the schemes; only numerical

tests can tell if a modification improves performance or
not. Mathematical proofs for simplified equations can only 

t
(rv) 1 = ? (rvv) 5 2=ptot 1 =? SBB

e D2 (= ? B)
B
e

, (2)provide hints. It is also an open question how well the
essentially one-dimensional schemes will perform in multi-
dimensional simulations. Besides monotonicity and the 

t
(e) 1 = ? (ev) 5 2= ? ( ptotv) 1 =? SBB ? v

e Dconservation of mass, momentum, and energy, one may
require the scheme to satisfy other criteria; certain quanti-
ties like density and pressure should remain positive under 2 (= ? B)

B ? v
e

, (3)
all circumstances, or a particular function of the variables
(e.g., the divergence of the magnetic field) should be con-
served. 

t
(B) 1 = ? (vB) 5 = ? (Bv) 2 (= ? B)v, (4)

Comparison of numerical schemes has a long tradition.
Woodward and Colella’s [14] seminal paper on HD prob-

where = ? (Bv)j 5 oi (Bivj)/xi in Cartesian coordinates.lems with shocks still provides a guideline in the choice of
The initial conditions have to satisfynumerical schemes for hydrodynamical simulations. Such

an extensive study (with several algorithms) for MHD
flows with discontinuities has not been published yet to = ? B 5 0. (5)
the best of our knowledge. (Stone et al. [15] published a
test suite with results produced by the Zeus code), so we The exact solution of the MHD equations (1)–(4) keeps
set out to evaluate some FCT and TVD numerical schemes

= ? B 5 0 indefinitely; thus the expressions proportional
for a rather large set of HD and ideal MHD test problems. to = ? B, the rightmost terms in (2)–(4), are zero analyti-

In Section 2 the system of time-dependent ideal MHD cally. However, in multidimensional simulations numerical
equations are discussed. Numerical schemes based on the errors may lead to a finite divergence of the magnetic
flux-corrected transport and the total variation diminishing field. Powell [29] discovered that including these corrective
techniques are described in Section 3. Section 4 compares terms and the corresponding characteristic divergence
the performance of the different numerical schemes for wave, can stabilize the solution of Riemann-solver based
the basic advection tests and for some one- and two-dimen- algorithms. We found that using the corrective terms in
sional HD and MHD problems. Finally, in Section 5 we multidimensional calculations improved the solution for
summarize our experience with different numerical the FCT and TVDLF schemes as well. It should be noted
schemes and provide suggestions for their application, as that the terms are nonconservative; thus conservation of
well as directions for further work. momentum, energy, and magnetic flux are not strictly en-

forced any longer. For one-dimensional problems = ? B 5
2. MATHEMATICAL DESCRIPTION 0 is equivalent with Bx/t 5 0, which is satisfied exactly

and trivially with or without Powell’s corrective terms.
The numerical schemes investigated in this paper were In Eqs. (2) and (3) the total pressure,

designed to explicitly solve a set of conservation laws.
Nonstiff source terms can be included by temporal splitting
or in an unsplit fashion, but here we shall concentrate ptot 5 p 1

B2

2e
, (6)

on homogeneous equations. The ideal MHD equations
provide a complex yet important example. The plasma is

is a sum of the thermal and magnetic pressures. In thedescribed by the primitive variables V, i.e., the mass density
conservative formulation the thermal pressure is deter-r, velocity v, pressure p, and magnetic field B, which are
mined from the total energy density,all functions of time t and three (if no simplifying symmetry

assumption is made) spatial coordinates x. The MHD equa-
tions can be expressed in various mathematical forms. e 5

p
c 2 1

1
rv2

2
1

B2

2e
, (7)

However, for numerical models the conservative form is
often preferred; the equations explicitly represent the con-
servation of mass, momentum, total energy, and induction which is a sum of thermal, kinetic, and magnetic energy
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densities. Here we assumed an ideal gas with an adiabatic U n12 5 LxLyU n11 5 LxLyLyLxU n. (11)
index c, but note that a more general equation of state can
be easily incorporated into the FCT and TVDLF schemes, In all the two-dimensional tests we took this latter ap-
while it causes substantial complications for Riemann proach.
solver-based algorithms. In the rest of the paper we use In the following descriptions the value of the discretised
units where the magnetic permeability e 5 1. By setting conservative variable U n

j is defined on the mesh at the
B 5 0 we retain the equations of compressible HD. discrete time level tn as a volume average within the jth

In explicit integration schemes the time step is restricted mesh-cell centered at position xj . The cell interfaces are
by the Courant–Friedrichs–Levy (CFL) condition, at xj21/2 and xj11/2, where xj11/2 5 (xj 1 xj11)/2. We shall

also use the notation DUj11/2 5 Uj11 2 Uj for the difference
of variables in adjacent cells. The subscript j 1 1/2 will

Dt # C min
q5x, y,z

S Dq
cmax

q
D , (8) always refer to a quantity centered on the cell interface at

xj11/2 , while a time-centered quantity will be denoted by
a superscript n 1 1/2.

where C is the Courant number and cmax
q is the maximum

propagation speed of information in direction q. For the 3.1. Flux-Corrected-Transport (FCT) Algorithms
hyperbolic system of ideal MHD equations this speed is

The FCT scheme solves the equations for each conserva-
tive variable separately. The algorithm discretises thecmax

q 5 uvqu 1 cf
q 5 uvqu

(9) transport flux f 5 vU and the rest of the spatial derivatives
S (the right-hand sides of Eqs. (1)–(4), in FCT terminology
the ‘‘source terms’’) slightly differently. The solution is

1
1

Ï23cp 1 B2

r
1 !Scp 1 B2

r
D2

2 4
cpB2

q

r2 4
1/2

, advanced from time level n to n 1 1 in two steps:

the half step,

where cf
q is the speed of the fast-mode MHD wave, relative

U t
j 5 U n

j 2
Dt

2Dx
( f n

j11/2 2 f n
j21/2) 1

Dt
2

S n
j (12)to the fluid in the q 5 x, y, z directions.

U d
j 5 U t

j 1 Dn
j11/2 2 Dn

j21/2 (13)3. NUMERICAL SCHEMES

U n11/2
j 5 U d

j 2 Ãn
j11/2 1 Ãn

j21/2 ; (14)Here we provide a self-contained description of some
FCT and TVD algorithms in one dimension on a stationary

the full step,uniform grid with the space variable denoted by x. We
repeat and recast the definitions to clarify some important
points and to facilitate comparison of the algorithms. U T

j 5 U n
j 2

Dt
Dx

( f n11/2
j11/2 2 f n11/2

j21/2 ) 1 DtS n11/2
j (15)

For FCT on nonuniform or moving grids see Boris [16].
Yee et al. [17] describes TVD schemes with generalized U D

j 5 U T
j 1 Dn11/2

j11/2 2 Dn11/2
j21/2 (16)

coordinates, and another finite volume formulation is given
by Wang and Widhopf [19]. A fully multidimensional FCT U n11

j 5 U D
j 2 Ãn11/2

j11/2 1 Ãn11/2
j21/2 , (17)

scheme is described by Zalesak [20], and DeVore [21]
extends it to staggered grids to keep the = ? B 5 0 condition where D is the diffusive flux which introduces a numerical
to roundoff errors. A fully multidimensional TVD Mac- diffusion to the solution in order to ensure stability and
Cormack scheme can be found in Yee’s [11] paper. monotonicity and Ã is the corrected anti-diffusive flux

The easiest way to generalize a one-dimensional scheme which eliminates the excessive numerical diffusion where
to multidimensional problems is via a Strang-type [22] op- it is possible. The superscripts t and d refer to the ‘‘trans-
erator splitting, e.g., in two dimensions, port’’ and ‘‘diffusion’’ stages respectively at the half step,

while T and D refer to the respective stages at the full
U n11 5 LDt/2

x LDt
y LDt/2

x U n, (10) step. The usage of fluxes at cell interfaces ensures the
conservation property, because the same quantities are
added as input for one cell and subtracted as output forwhere Lx and Ly are the appropriate one-dimensional op-
an adjacent cell.erators for a given time step with spatial derivatives taken

The transport fluxes arein the x and y directions, respectively. A somewhat faster
and usually satisfactory method is alternating the order of

f n
j11/2 5 U n

j11/2vn
j11/2 , f n11/2

j11/2 5 U n
j11/2vn11/2

j11/2 , (18)Lx and Ly with every time step; thus
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where Uj11/2 5 (Uj11 1 Uj)/2 and vj11/2 5 (vj11 1 vj)/2. Note 3.2. ETBFCT
that U n is used to compute the time-centered transport

In ETBFCT (Boris [16], the meaning of ETB is probably
flux f n11/2. In contrast, the Sn11/2 ‘‘sources’’ are fully time

explicitly treated boundary) the uncorrected anti-diffusive
centered; e.g., the gradient of total pressure in the momen-

fluxes are
tum equation (2) is discretised as

An
j11/2 5 en

j11/2 DU t
j11/2 , An11/2

j11/2 5 en11/2
j11/2 DU T

j11/2 (25)
Sn11/2

j 5
1

2Dx
[ ptot(U n11/2

j11 ) 2 ptot(U n11/2
j21 )], (19)

with the diffusion and anti-diffusion coefficients

which is identical to centering the sources on the cell inter- nn
j11/2 5 Ah 1 Ad («n

j11/2)2, en
j11/2 5 Ah 2 Ah («n

j11/2)2

(26)faces. Alternatively one can center the conservative vari-
nn11/2

j11/2 5 Ah 1 Ad («n11/2
j11/2 )2, en11/2

j11/2 5 Ah 2 Ah («n11/2
j11/2 )2,ables

where
Sn11/2

j 5
1

Dx
[ ptot(U n11/2

j11/2 ) 2 ptot(U n11/2
j21/2 )], (20)

«n
j11/2 5

1
2

Dt
Dx

vn
j11/2 , «n11/2

j11/2 5
Dt
Dx

vn11/2
j11/2 . (27)

or the primitive variables
With these definitions A 5 D when the velocity and the
S ‘‘sources’’ are zero; thus there is no ‘‘residual’’ diffusion

Sn11/2
j 5

1
Dx

[ ptot(V n11/2
j11/2 ) 2 ptot(V n11/2

j21/2 )]. (21) as in the original SHASTA scheme by Boris and Book [9].
When the velocity is nonzero, the «2 terms reduce the
amplitude and phase errors to fourth order for linear con-

In the FCT calculations performed in this paper we use vection problems.
the first centering, although we found that centering the ETBFCT should be used with «n11/2 # 0.5 everywhere
primitive variables leads to comparable results. We note to ensure the monotonicity at steep gradients; thus setting
that the spatial centering of the transport flux should al- the Courant number C # 0.5 in Eq. (8) is recommended.
ways use the original prescription Eq. (18) to avoid adverse
effects in some cases, like in the problem of strong rarefac- 3.3. YDFCT
tion waves in Section 4.4.

Odstrčil [23] noted that the transported values U T areThe diffusive fluxes are
not the only ones which remain unchanged by the differ-
ence scheme when f and S are zero. ‘‘Phoenical’’ anti-Dn

j11/2 5 nn
j11/2 DU n

j11/2 , Dn11/2
j11/2 5 nn11/2

j11/2 DU n
j11/2 , (22)

diffusive fluxes can also be obtained using the half-step
values U n11/2 at the full step. In YDFCT (the YD is just

where the diffusion coefficients nj11/2 will be specified in a notation used to distinguish the different experimental
the following two subsections. Again, U n is used to com- versions of the scheme) the uncorrected anti-diffusive flux
pute the time-centered diffusive flux Dn11/2. in the full step is modified to

The amount of the anti-diffusive flux is controlled by a
limiter to avoid the formation of new maxima or minima An11/2

j11/2 5 en11/2
j11/2 max(uDU n11/2

j11/2 u, As uDU T
j11/2u) (28)

with respect to the transported and diffused solution,

which eliminates the edge erosion problem as described
Ãn

j11/2 5 sn
j11/2 max[0, by Odstrčil [24].

In YDFCT the diffusive fluxes are split in order to reachmin(uAn
j11/2u, sn

j11/2 DU d
j21/2 , sn

j11/2 DU d
j13/2)] (23)

higher phase accuracy; thus the half-step transport in Eq.
(12) is redefined asÃn11/2

j11/2 5 sn11/2
j11/2 max[0,

min(uAn11/2
j11/2 u, sn11/2

j11/2 DU D
j21/2 , sn11/2

j11/2 DU D
j13/2)] (24)

U t
j 5 U n

j 2
Dt

2Dx
( f n

j11/2 2 f n
j21/2) 1

Dt
2

Sn
j

(29)where sn
j11/2 5 sgn(DUd

j11/2) and sn11/2
j11/2 5 sgn(DU D

j11/2). The
1 (cn

j11/2 DU n
j11/2 2 cn

j21/2 DU n
j21/2)uncorrected anti-diffusive flux Aj11/2 will be specified in

the following subsections.
withA more general limiter, especially suitable for explicitly

multidimensional implementations with no dimensional
cn

j11/2 5 hQ; 1 hQ; («n
j11/2)2. (30)splitting, is described by Zalesak [20].
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Finally, the full-step diffusion and anti-diffusion coeffi- formulation allows for second-order accurate (in time) un-
split source terms and can also be made fully multidimen-cients are also modified,
sional with no dimensional splitting.

The MUSCL (monotonic upwind schemes for conserva-nn11/2
j11/2 5 Ad 1 Ah («n11/2

j11/2 )2, en11/2
j11/2 5 Ad 2 Ad («n11/2

j11/2 )2, (31)
tion laws) TVD schemes achieve the second-order tempo-
ral accuracy by the Hancock predictor step,enabling YDFCT to use time steps that are twice as large

as those that ETBFCT can, because the monotonicity prop-
erty is ensured for «n11/2 # 1. We note that the increased

U n11/2
j 5 U n

j 2
1
2

Dt
Dx

[F (U n
j 1 As DU n

j ) 2 F (U n
j 2 As DU n

j )],diffusion and anti-diffusion coefficients exclude a fully mul-
tidimensional implementation of YDFCT, because there (35)
the sum of the diffusion coefficients for the two or three
spatial directions exceeds As and a numerical instability (in- where the limited differences DU n will be defined in Sec-
dependent of the time step) results. ETBFCT may have tion 3.7. In the full step upwinded left and right states,
similar problems in unsplit three-dimensional computa- denoted by U L and U R, are formed from U n11/2,
tions. On the other hand, for dimensionally split implemen-
tations YDFCT seems to be superior to ETBFCT.

UL
j11/2 5 Un11/2

j 1 As DUn
j , UR

j11/2 5 Un11/2
j11 2 As DUn

j11 , (36)
3.4. Total Variation Diminishing (TVD) Algorithms

and the flux at the cell interface is calculated as F LR 5The total variation diminishing (TVD) schemes ensure
[F (U L) 1 F (U R)]/2. The dissipative limiter FLR is a func-that the total variation does not increase with time
tion of some symmetric average U LR of U R and UL, and
of the difference DU LR 5 U R 2 U L. With these definitionsO

j
uDU n11

j11/2u # O
j

uDU n
j11/2u. (32)

the full step is

In contrast with FCT, all spatial derivatives in a conserva-
U T

j 5 U n
j 2

Dt
Dx

(F LR
j11/2 2 F LR

j21/2) (37)tion form are included in the F fluxes of TVD, i.e., F 5
f 2 S, and the equations are solved simultaneously. Thus
U and F are vectors of the conservative variables and U n11

j 5 U T
j 1 As (FLR

j11/2 2 FLR
j21/2). (38)

their respective flux functions. The contribution of terms
in nonconservative form, e.g., physical source terms, or Unlike in FCT, the ‘‘transport stage’’ U T is used in (34)
Powell’s corrective sources, are added separately without and (38) only; thus F and F could be combined in a single
the limiting procedures of TVD. The characteristic based modified flux. Note that the limited differences are always
TVD schemes also use the ck eigenvalues and the rk right calculated from U n and not from U n11/2. The latter choice
and lk left eigenvectors of the F/U matrix. Following leads to severe degradation of results even for the simple
Yee [11], we define a rather large class of TVD schemes convection tests. We also note that the Hancock predictor
and then select a few special cases for our tests. is superior to a simple Euler transport step. These observa-

In the non-MUSCL class of TVD schemes the interface tions warn against the use of the simplifications proposed
fluxes are simple averages of the cell-centered fluxes; thus by Barmin et al. [13].

U T
j 5 U n

j 2
Dt

2Dx
( F n

j11 2 F n
j21) (33)

3.5. TVD Lax–Friedrichs Scheme

U n11
j 5 U T

j 1 As (Fj11/2 2 Fj21/2). (34) There are many TVD schemes. However, we are inter-
ested in Yee’s [11] high order Lax–Friedrichs TVD scheme
because it does not use a Riemann solver; thus it canThe limiter Fj11/2 is a function of some symmetric average

Uj11/2 of U n
j and U n

j11 (e.g., the arithmetic mean, or be applied to any system of conservation laws without
knowledge of the characteristic waves. Yee originally de-the Roe [25] average for hydrodynamics, or it is calcu-

lated from the arithmetic mean of the primitive variables fined FLR
j11/2 5 FYee

j11/2 5 DU LR
j11/2 , but this leads to a very

diffusive scheme. It is also suspect to a pair-wise coupling[Vn
j 1 V n

j11]/2) and of their difference DUj11/2 . Second-or-
der accuracy in time is achieved by a second-order correc- of the cells if the initial conditions are such, in which case

the method reduces to the even more diffusive first-ordertion term included in F (see in Eq. (49)). Alternatively,
the first-order U T can be replaced by some second-order Lax–Friedrichs scheme. If we multiply FYee by the global

or the local Courant number the diffusion is reduced (andapproximation (e.g., MacCormack-type), in which case F
should not include the correction term. The MacCormack the coupling problem is also eliminated) and, according to
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the numerical tests, the scheme preserves most of the de-
2 As [a(uau 2 a2)j 1 a(uau 2 a2)j11] (42)

sired properties of a TVD scheme:
fYee

j11/2 5 a j11/2(ua*u 2 a2)j11/2

2 As (aj 1 aj11)(uau 2 a2)j11/2 (43)FTVDLF
j11/2 5

Dt
Dx

cmax
j11/2 DU LR

j11/2 . (39)

fSweby
j11/2 5 a j11/2(uau 2 a2)j11/2 2 a(uau 2 a2)j1s (44)

Cockburn et al. [12] take cmax
j11/2 5 max[cmax

x (U R),
fRoe

j11/2 5 (a j11/2 2 aj1s)(uau 2 a2)j11/2 , (45)
cmax

x (U L)], while Barmin et al. [13] use cmax
j11/2 5

cmax
x (U LR), where cmax

x has been defined in Eq. (9) for the
where the k superscripts were dropped and in the SwebyMHD equations. We take the latter since it is computation-
and Roe limiters s 5 1 for aj11/2 , 0 and 0 otherwise. Inally less expensive, and it is consistent with the Riemann-
the Harten limitersolver-type TVD schemes, where the eigenvectors and ei-

genvalues are also evaluated at the averaged U LR. We tried
to further reduce cmax for some of the conserved variables, a*j11/2 5 aj11/2 1

a(uau 2 a2)j11 2 a(uau 2 a2)j

2aj11/2
(46)

e.g., using uvxu for density, or the Alfvén speed uBxu/Ïr for
the magnetic field, but some spurious oscillations were
observed with no significant improvement in the resolution while in Yee’s modified version
of discontinuities.

a*j11/2 5 aj11/2 1
aj11 2 aj

2aj11/2
(uau 2 a2)j11/2 (47)

3.6. TVD with Local Characteristics Approach

As a basis of comparison for the simple FCT and TVDLF and a* 5 a, where aj11/2 5 0. Harten’s artificial compression
methods, we implemented (Tóth [26, 27]) some TVD term is not included here; on the other hand, we allow
schemes based on an approximate Riemann solver follow- sharper slope limiters than the original minmod limiter
ing Yee’s [11] local characteristics approach. The eigenvec- (see Section 3.7).
tors for the MHD equations were taken from Roe and Although it may not be apparent, fYee 5 fRoe and
Balsara [28]. Powell’s [29] extension of the 7 3 7 eigensys- fHarten 5 fSweby unless an entropy fix is applied, which
tem to an eight-wave Riemann solver is also implemented simply means that uau in Eqs. (42)–(47) should be replaced
(see Gombosi et al. [30]) to stabilize the TVD scheme everywhere by
against instabilities related to numerical errors in main-
taining = ? B 5 0. The eight-wave Riemann solver advects
the errors in = ? B away, but it does not eliminate them.

c(a) 5Huau, if uau $ dk ,

(a2 1 d2
k)/2dk , otherwise,

(48)
Since a major part of Yee’s work has been published in
technical memoranda, we feel it is useful to repeat the
definitions in a concise and uniform way while an effort is and, similarly, ua*u should be replaced by c(a*). Here dk
made to remove the typos of previous publications. is some small parameter for the kth characteristic field.

The jump in the kth characteristic wave Ryu and Jones [4] take 0.2 for the fast and slow waves,
0.4 for the Alfvén waves, and 0 for the entropy wave. There

ak
j11/2 5 lk

j11/2 ? DUj11/2 (40) are other types of entropy fixes in the literature, but their
evaluation is beyond the scope of this paper. The entropy

is the scalar product of DUj11/2 and the kth column lk of fix is not applied in the simulations shown in this paper,
the left eigenvector matrix L 5 R21 evaluated at Uj11/2 . and the fYee 5 fRoe limiter is used.
The corresponding eigenvalue ck

j11/2 is also calculated from When the predictor step in Eq. (33) is only first-order
Uj11/2 , and it is made dimensionless: accurate in time, a second-order correction is added,

f*j11/2 5 fj11/2 1 a2
j11/2aj11/2 . (49)ak

j11/2 5
Dt
Dx

ck
j11/2 . (41)

Finally, the characteristic limiter f* (or f for a second-
Now the f limiter for the kth characteristic field can be order predictor, instead of Eq. (33)) is transformed back

any of the following expressions in the non-MUSCL formu- to the limiter F in Eq. (34) for the conservative variables U,
lation,

F 5 O
k

rkf*k, (50)
fHarten

j11/2 5 a j11/2(ua*u 2 a2)j11/2
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where rk is the kth eigenvector in the right eigensystem- The limiters defined in Eqs. (53)–(56) will be referred to
as minmod, UMIST, Woodward, and superbee limiters,matrix R.

For the MUSCL approach the limiting has already been respectively. Limiters which require small parameters to
avoid division by zero are not listed. The minmod and theapplied to the arguments of fLR(U L, U R); thus we simply

have (cf. (42)—(45)) superbee limiters are the most and least diffusive of all
acceptable symmetric two-variable limiters, respectively.
The UMIST and Woodward limiters lie in between. ThefLR

j11/2 5 aLR
j11/2c(aLR

j11/2), (51)
symmetric TVD scheme requires three-variable limiters,
while the MUSCL TVD scheme may use weighted, asym-where aLR and aLR are defined by (40) and (41) with
metric slope limiters (see Yee et al. [17]).Uj11/2 and DUj11/2 replaced by U LR

j11/2 and DU LR
j11/2 , respec-

tively.
It is now quite clear how the TVDLF method is derived. 4. NUMERICAL TESTS

Replacing c(ak) by uamaxu 5 cmax Dt/Dx will increase the
The numerical tests in this paper are all fully specifieddiffusion, but it removes the dependence on the k index

including discretisation, boundary conditions, adiabatic in-of the characteristic variables. In the case of TVDLF the
dex etc. The tests are taken from the literature to allowtransformation (50) from the characteristic limiter to the
comparison with previous work. They are selected on theconservative limiter,
basis of their simplicity (some of the more complicated
tests were so loosely defined that we were unable to repro-FTVDLF 5 O

k
rk(fLR)k 5 O

k
rkakuamaxu

(52) duce them even after considerable effort), their usefulness
in terms of posing a real challenge to the algorithms, and

5 R ? L ? DU LRcmax Dt
Dx

, their completeness; i.e., the tests together should cover
most of the aspects of practical simulations.

Convection test problems serve as the most basic com-
simplifies to Eq. (39) since the R and L matrices cancel. parison for various numerical algorithms. We solve the

In the next subsection we complete our description of continuity equation (1) with a prescribed constant velocity
the TVD schemes by defining several versions of the slope field. This is the simplest example of all hyperbolic equa-
limiters denoted by overlines in Eqs. (35)–(36) and tions; thus schemes giving unsatisfactory results should be
(42)–(47). abandoned. Convection tests have been published for sev-

eral other algorithms which enable comparison of the re-
sults. The exact solution of the test problems, a shifted and3.7. TVD Slope Limiters
unchanged initial density distribution, allows quantitative

In the MUSCL schemes the DU differences of the con- determination of the numerical accuracy. The error of a
servative variables in Eq. (36), while in the non-MUSCL numerical solution will be defined as the average absolute
schemes the jumps in the characteristic variables ak 5 error for the appropriate variable
lk ? DU, or the expression a(uau 2 a2) in Eqs. (42)–(47) are
limited by slope limiters. Denoting by w the quantity to
be limited, any of the following limiters can be used. E(U) 5

1
N ON

j51
uUj 2 U exact

j u. (58)

wj 5 minmod(wj21/2 , wj11/2) (53)
In the one-dimensional HD and MHD test problems thewj 5 minmod(2wj21/2 , 2wj11/2 ,

full set of HD and MHD equations are solved with one
Af wj21/2 1 Df wj11/2 , Df wj21/2 1 Af wj11/2) (54) spatial variable x. These systems of equations are nonlin-

ear; thus the monotonicity of the numerical solutions iswj 5 minmod(2wj21/2 , 2wj11/2 , As wj21/2 1 As wj11/2) (55)
not guaranteed by a mathematical proof for any of the

wj 5 s max[0, min(2uwj11/2u, swj21/2), discussed algorithms and only numerical tests can reveal
the properties of the schemes under various conditions.min(uwj11/2u, 2swj21/2)], (56)

Real applications are often multidimensional; thus the
algorithms have to be tested in more than one dimensionwhere s 5 sgn(wj11/2) and the generalized minmod function
as well. Multidimensional MHD problems present a specialfor n . 1 arguments is defined as
challenge to schemes based on dimensionally split algo-
rithms, namely the conservation of the divergence of the

minmod(w1 , w2 , ..., wn) 5 sgn(w1)
(57) magnetic field. Often the errors associated with nonzero

= ? B are negligible, but other tests (like DeVore’s currentmax[0, min(uw1u, sgn(w1)w2 , ..., sgn(w1)wn)].
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carrying cylinder) indicate that there is a potential danger Figure 1 shows the numerical solution and the average
absolute errors with respect to the exact solution for differ-in not taking care of the numerically created magnetic
ent numerical schemes at time t 5 1.6. For this simplemonopoles.
equation the non-MUSCL TVD and TVDLF schemes areIn all cases the grid is uniform with cell centers at posi-
equivalent; thus the conclusions drawn for TVDLF applytions x1, ..., xN in one dimension. Thus the computational
to all TVD schemes. ETBFCT with CFL number 0.8 pro-region extends from x1 2 Dx/2 to xN 1 Dx/2, where Dx 5
duces over- and undershoots since the monotonicity condi-xj11 2 xj 5 const. We shall usually define the computational
tion is violated (see Section 3.2). YDFCT and the TVDregion, which is independent of the resolution. A domain
scheme with the superbee limiter are the most accurate;xL , x , xR resolved by N grid cells corresponds to xj 5
ETBFCT with C 5 0.4 and TVD with the WoodwardxL 1 ( j 2 1/2) (xR 2 xL)/N for j 5 1, ..., N. All the initial
limiter follows; and, finally, TVD with the minmod limiterconditions in the following subsections are defined in this
is the least accurate, due to its diffusivity.discrete sense; thus x will represent the array hx1 , ..., xNj.

Boundary conditions can be easily realized by introduc-
4.2. Convection of a Semicircle Waveing ghost cells at positions corresponding to x0 and xN11 ,

or even x21 and xN12 . The advantage of having two layers The semicircle convection test problem was suggested
of ghost cells around the computational domain is that by McDonald [18]. This test problem enables us to compare
only the conservative variables have to be extrapolated to the phase errors of the algorithms.
the boundaries and intermediate nonphysical quantities Again a one-dimensional uniform grid of N 5 100 cells
are determined the same way as inside the computational is used with 0 , x , 1 and periodic boundaries. Only the
domain; the disadvantage is that one may not know the continuity equation (1) is solved with vx 5 1. The initial
gradient of U outside the boundaries. In the test cases density field contains a 30-cell wide semicircle wave
presented here the state of the ghost cells can always be
easily determined. Fixed, periodic, continuous, and reflec-
tive boundaries will refer to keeping U fixed in the ghost rj 5H1 1 2[1 2 ( j 2 20)2/152]1/2, if 5 , j , 35,

1, otherwise.
(60)

cells, copying U from the periodically equivalent cells,
copying the state from the closest cells of the computational
domain, or mirroring the inside U with respect to the Results are compared at t 5 1.6.
boundary and multiplying the normal momentum by 21, The numerical solutions and the respective errors for
respectively. Boundaries are updated before each time step this test problem are shown in Fig. 2. Again, TVDLF repre-

sents all TVD schemes. YDFCT with its sixth-order phaseand for two-step methods after the half step as well. In
error (for linear convection) is the most accurate and thedimensionally split two-step methods at the half step the
TVD scheme with the Woodward limiter comes next. Itboundaries in the actual direction need to be updated only.
is important to observe that the superbee limiter is tooFCT requires boundary conditions for the transported and
sharp; if the calculation is continued the semicircle will bediffused U d and U D variables also. When not mentioned,
distorted into a square wave. For this reason we shallcontinuous boundaries are taken.
abandon the superbee limiter for the rest of the paper
although for certain applications, where discontinuities are4.1. Convection of a Square Wave
of primary interest, it can be used successfully. The minmod

The square wave convection test problem was intro- limiter is rather diffusive; thus we shall not show results
duced by Boris and Book [9] for a basic comparison of for it in the following tests unless some numerical instability
various numerical algorithms. Although this test problem occurs for the sharper limiters. For systems of equations,
is very simple, it can cause numerical difficulties, like exces- of course, different limiters for different quantities could be
sive numerical diffusion or unphysical oscillations, to some combined, but that would lead to many more combinations
algorithms due to the presence of steep gradients. than we can present in this paper. Finally, we conclude

We solve the continuity equation (1) on a one-dimen- that ETBFCT should be used with the Courant number
sional uniform grid of N 5 100 cells with 0 , x , 1 C , 0.5 to avoid the undershoot behind the wave, although
and periodic boundary conditions. The velocity is vx 5 1 it is less prominent here (for C 5 0.8) than behind the
everywhere. The initial density profile contains a square square wave, because the density gradient in the semicircle
wave, wave is less steep.

4.3. Interaction of Two Blast Waves

This HD test in one dimension was introduced by Wood-rj 5H2, if 1 # j # 21,

0.5, otherwise.
(59)

ward [14] to illustrate the strong relationship between the
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FIG. 1. Convection of a square wave. Density as a function of positions is shown at time t 5 1.6. The Courant number and the method of
computation is indicated at the top for each plot: the suffixes M, W, and S for the TVDLF scheme refer to the minmod, Woodward, and superbee
limiters, respectively. The average absolute errors E with respect to the exact solution are shown within the plots.

accuracy of the overall flow solution and the thinness of 0.038. It is quite a sobering experience to see the relatively
poor performance of the FCT and TVDLF schemes afterdiscontinuities on the grid. It involves multiple interactions

of strong shocks, rarefactions, and contact discontinuities their success with the simple convection tests. While the
with each other and with boundaries. The resulting hydro- velocity is calculated quite accurately at the low resolution
dynamic flow evolution is relatively complex and details already (with some noise from FCT), the contact disconti-
are given by Woodward and Colella [14]. Because much nuity at x 5 0.75 in the density is in severe error for the
of the important interactions take place in a small volume, low resolution FCT and TVDLF solutions and it is only
this problem is very difficult to compute on a uniform qualitatively represented by TVD. Here the superiority of
Eulerian grid. the characteristic based TVD scheme over TVDLF is quite

The boundaries are reflective on both sides. The initial clear. For N 5 1200 grid points all methods converge to
conditions in terms of the primitive variables V are the same solution, but in the density ETBFCT has still

some unphysical ripple, TVDLF is a bit diffused, and TVD
comes closest to the ‘‘exact’’ solution (see PPM results by
Woodward and Collela [14]) although the contact disconti-

V 55
r 5 1, vx 5 0, p 5 1000, if 0 , x , 0.1,

r 5 1, vx 5 0, p 5 0.01, if 0.1 , x , 0.9,

r 5 1, vx 5 0, p 5 100, if 0.9 , x , 1.

(61)
nuities are spread over many cells. Observe the slight oscil-
lation at x 5 0.55 produced by TVDLF; the monotonicity is
not guaranteed for the nonlinear system of HD equations.
Overall, the TVD/TVDLF schemes perform better thanThe adiabatic index is c 5 1.4. Calculations are performed
FCT for this test which involves the interaction of veryon two different grids of N 5 200 and N 5 1200 points.

Figure 3 shows the distribution of r and vx at time t 5 strong hydrodynamical discontinuities.
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FIG. 2. Convection of a semicircle wave. Notation is the same as for Fig. 1.

4.4. Strong Rarefaction Waves solver of TVD fails unavoidably, and only artificial diffu-
sion applied to the cells with negative pressure could make

Einfeldt et al. [31] analyzed the one-dimensional hydro-
the code work. The diffusion coefficients could be tuned

dynamic problem of two strong rarefaction waves moving
to get better results, but that problem-dependent approach

symmetrically apart in opposite directions to illustrate cer-
is not in the spirit of modern shock-capturing schemes.

tain failures of Godunov-type algorithms. The analytic so-
A more satisfactory solution could be to use Einfeldt’s

lution produces vanishing pressure in the center, but the
positively conservative HLLE scheme, where necessary,

solution is not linearizable.
as suggested by Quirk [32]. The test was of course designed

The initial conditions are
to crash algorithms that can have undershoots in density
and pressure, and in practical simulations such situations
may occur rarely. It is, however, important to know how

V 5Hr 5 1, vx 5 22, p 5 0.4, if 0 , x , 0.5,

r 5 1, vx 5 12, p 5 0.4, if 0.5 , x , 1,
(62) the algorithms work under such unfavorable conditions.

4.5. Magnetic Shock Tube
and c 5 1.4. The calculation is stopped at t 5 0.1 and
N 5 100 grid points are used. This test problem by Brio and Wu [33] became a bench-

mark for magnetohydrodynamic codes. It produces a fastLooking at Fig. 4 can convince us that none of the algo-
rithms pass satisfactorily this difficult test. The FCT meth- rarefaction fan and a slow compound wave (consisting of

a slow rarefaction wave attached to a slow shock plus aods do not crash, but the density profiles are flattened
instead of the correct U shape (see the figures in [31]). rotational discontinuity; alternatively, the two discontinu-

ities can be interpreted as an intermediate shock) movingThe TVDLF scheme passes with the minmod limiter and
reduced time step (C 5 0.4) only, and the results are hardly to the left, and a contact discontinuity, a slow shock, and

a fast rarefaction fan moving to the right. The one-dimen-better than those of FCT. Finally, the linear Riemann
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FIG. 3. Two interacting blast waves. The density (top) and velocity (bottom) are shown at t 5 0.038. Calculations were performed on grids with
200 (symbols) and 1200 (solid line) points.

FIG. 4. Strong rarefaction waves. The density (top) and velocity (bottom) is shown at t 5 0.1. TVDLF was run with the minmod limiter and
with half the maximum time step, while the non-MUSCL TVD scheme required a fix against negative pressures (see discussion in the text).
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sional MHD equations are solved with two vector compo- velocity, but otherwise it is as sharp as the Riemann solver-
based TVD method. When the time step is reduced tonents for v and B; i.e., vz and Bz are taken to be zero.

The initial conditions are C 5 0.4, YDFCT produces comparable results to ETBFCT.
We also note that due to the very small thermal pressure,
roundoff errors may create difficulties in the Riemann
solver unless the analytical inequalities among the fast,
slow, and Alfvén speeds are enforced numerically.

V 55
r 5 1, v 5 0, p 5 1, Bx 5 0.75, By 5 11,

if 0 , x , 0.5,

r 5 0.125, v 5 0, p 5 0.1, Bx 5 0.75, By 5 21,

if 0.5 , x , 1,

(63)

4.7. Double Mach Reflection of a Strong Shock

This test by Woodward and Colella [14] became a
and c 5 2. Results are compared at t 5 0.1 for coarse reference problem for two-dimensional shock hydrody-
(N 5 200) and fine (N 5 800) grids. namics. A planar shock is reflected from a wedge at a

We plotted r and vx for the different numerical solutions 608 angle and a self-similar flow develops. The most
in Fig. 5. The numerical errors in other variables show complicated structures, including two Mach stems with
similar effects. The low resolution results show a distinct two contact discontinuities, form in the rather small
advantage of the smooth TVD solutions over the spurious region beyond the reflection of the incident shock. The
oscillations of FCT. At high resolution YDFCT seems to first Mach shock is strong and it connects the leading
be somewhat better than ETBFCT and comparable to triple point with the reflecting wall. The second Mach
TVDLF, which has a spurious undershoot in velocity at shock which extends from the trailing triple point is
x 5 0.8 and a contact discontinuity spreading over 10 cells rather weak and it vanishes entirely at the point it
at x 5 0.6. Not surprisingly the characteristeric-based TVD would reach the contact discontinuity from the first
scheme is superior in every respect. The difference is most Mach reflection. Where the first contact discontinuity
significant on the N 5 200 grid. approaches the reflecting wall, the flow of the denser

fluid is deflected by a pressure gradient buildup in the
region. The result is that a jet of the denser fluid is4.6. Propagation of Shear Alfvén Waves
formed which propagates to the right along the wall.

This simple one-dimensional test problem was described The second contact discontinuity is extremly weak.
by Stone and Norman [34] to illustrate that some schemes The problem is set up using a rectangular domain, one
that perform quite well for hydrodynamical tests may have unit high and four units long, i.e., 0 , x , 4 and 0 , y ,
difficulties with the propagation of Alfvén waves. The ini- 1. The left boundary and the lower boundary from x 5 0
tial transverse velocity pertubation produces two linearly to Ah are always set to the postshock conditions. The lower
polarized Alfvén waves moving in opposite directions. boundary is reflecting for Ah , x , 4, while the right bound-

The grid has N 5 150 cells in the 0 , x , 3 computational ary is continuous and the upper boundary is time depen-
region. Again only the x and y components of v and B dent following the exact motion of the shock wave; i.e.,
are considered, although using circularly polarized Alfvén the boundary cells are set to ambient values for xj 5 xs(t)
waves with three components could serve as an even better and the postshock values for xj # xs(t), where xs(t) is the
test, since those waves are exact solutions of the MHD position of the shock at time t. The planar shock is initially
equations for arbitrary amplitudes. Initially the magnetic at a 608 angle to the x-axis, starting at x 5 Ah at the bottom
field is longitudinal, and there is a slight transverse velocity and extending to the top of the grid, propagating at a speed
perturbation in the middle third of the mesh, of 10. Thus it intersects the upper boundary at xs(t) 5

10t/sin 608 1 1/6 1 1/tan 608. The pre- and postshock
conditions are

V 5 5
r 5 1, vx 5 0, vy 5 0.001, Bx 5 1, By 5 0, p 5 1029,

if 1 , x , 2,

r 5 1, vx 5 0, vy 5 0, Bx 5 1, By 5 0, p 5 1029,

otherwise, (64)
V 5 5

r 5 1.4, vx 5 0, vy 5 0, p 5 1, if x , Ah 1 y/tan 608

r 5 8, vx 5 8.25 sin 608, vy 5 28.25 cos 608, p 5 116.5,

otherwise (65)

and c 5 1.4. The calculation is stopped at t 5 0.8 and
N 5 150 grid points are used. With the adiabatic index c 5 1.4 the preshock sound speed

is 1; thus the Mach number is 10. The calculation is stoppedInspecting Fig. 6 shows that in this test ETBFCT is more
accurate than YDFCT, but the TVD schemes are superior at t 5 0.2.

Density contour plots are presented in Fig. 7 for coarseto both. TVDLF has very small under- and overshoots in
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FIG. 5. Magnetic shock tube. Density (first and third rows) and the longitudinal velocity (second and fourth rows) are shown at time t 5 0.1.
Calculations were performed on a low resolution grid with N 5 200 (upper half), and on a high resolution grid with N 5 800 (lower half) cells.

(120 3 30) and fine (480 3 120) grids, but only the x , 3 MUSCL TVD scheme. Note, however, a small perturba-
tion in the first Mach shock just in front of the mushroom-parts are shown. For both resolutions FCT produces thin-

ner shocks (although staircased on the coarse grid), but it shaped head of the jet. For the Woodward limiter the
entropy fix (48) eliminates most of this error, but if aalso generates more noise behind the shock fronts than the

TVD schemes. The contact discontinuity from the leading superbee limiter was used for the contact discontinuities,
as proposed by Yee [11], the error would be much moreMach shock is kinked near the triple point in the low

resolution FCT solutions. At high resolution all methods pronounced and the entropy fix seems to be unable to cope
with the problem. Other entropy fixes or other versions ofshow the essential structures, although the jet at the lower

boundary is not very well defined, except for the non- the TVD scheme may behave differently, but in general
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FIG. 6. Propagation of shear Alfvén waves. Transverse velocity (top) and transverse magnetic field (bottom) are plotted at t 5 0.8. If the Courant
number is reduced to 0.4, YDFCT produces results comparable with ETBFCT.

one should check the results gained with sharp limiters The magnetic field components are obtained by discrete
central differencing the vector potential, Bx 5 DAz/Dy andagainst some entropy conserving scheme.
By 5 2DAz/Dx. This definition ensures = ? B 5 0 exactly
for the initial condition. The calculation is stopped after a4.8. Advection of a Current-Carrying Cylinder
full rotation around the center after 1256 time steps, where

DeVore [21] used this test to demonstrate the perfor- a fixed time step Dt 5 0.005 is used. The only difference
mance of his divergence B conserving fully multidimen- from DeVore’s test problem is in the spatial discretization
sional FCT algorithm using a staggered grid. Only the since he used a staggered grid, while we use cell-centered
induction equation (4) is solved; the rest of the flow vari- quantities for the discrete representation of the mag-
ables are kept constant. An off-center placed current-car- netic field.
rying cylinder orbits around the center of the grid in a We found that it is necessary to use Powell’s corrective
counterclockwise direction. There is a sheath of return term in Eq. (4) for all the numerical schemes to obtain
current on the surface of the cylinder. The circular advec- acceptable results. We also note that the diffusion and anti-
tion of the cylinder is an exact solution of the induction diffusion steps of FCT have to be applied for both the x
equation. and y sweeps for both components of the magnetic field,

The calculations are performed on a 100 3 100 mesh, even though the transport fluxes f 5 vxBx and f 5 vyBy in
and the computational domain is 250 , x, y , 50. The Eq. (4) are cancelled by identical source terms on the right-
cylinder is initially centered in the upper half-plane and hand side. In FCT, however, the transport flux and the
its radius is set to R 5 15. The angular speed of the rotation source terms are discretized differently, thus the cancella-
around the center of the grid is 1; thus tion in multidimensional simulations is not exact.

We plot the current density J 5 = 3 B and the magnitude
of the magnetic field B 5 uBu for the initial data and the
final results in Fig. 8. The relative errors, following De-

V 5 5
vx 5 2y, vy 5 x, Az 5 R/2 2 [x2 1 ( y 2 25)2]/(2R),

if x2 1 ( y 2 25)2 , R2,

vx 5 2y, vy 5 x, Az 5 0,

otherwise.

Vore’s definition,

E(B) 5
oN

i, j51 uBi, j 2 B exact
i, j u

oN
i, j51 uB exact

i, j u
, (67)(66)
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FIG. 7. Double Mach reflection of a strong shock. The density is plotted at t 5 0.2 with 30 contour levels from minimum to maximum values.
The calculations were performed on 120 3 30 (upper half) and 480 3 120 grids, but only the x , 3 portions are shown.

and a similar expression for E(J), are also indicated on 4.9. MHD Vortex
the plots. ETBFCT provided the smallest error, YDFCT Orszag and Tang [35] constructed this simple model to
and TVDLF are similar, while the non-MUSCL TVD study the evolution of MHD turbulence. It was generalized
scheme is the least accurate. The probable explanation for by Dahlburg and Picone [36] for the case of a fully com-
such a poor performance from the usually most accurate pressible medium and used as a numerical test by Zachary
TVD scheme is that here we solve the induction equation et al. [8]. The initial conditions are superpositions of peri-
only, while the Riemann solver uses the characteristics for odic sine waves containing X-points in both the velocity
the full set of MHD equations. There seems to be little and magnetic fields, but with different wave lengths. The
interest in writing a Riemann solver just for this test prob- flow becomes very complex, as expected, from a transition
lem; on the other hand, the FCT and TVDLF algorithms toward turbulence.
work optimally without modification. The grid is 192 3 192 large with 0 , x, y , 2f and

periodic boundary conditions. The initial vortex structureFor comparison DeVore obtained E(B) 5 0.25 and
is defined byE(J) 5 0.79 with his staggered grid FCT scheme. We

cannot compare the accuracy for the vector potential,
r 5 25/9, vx 5 2sin y, vy 5 sin x,

(68)since = ? B is not zero due to the numerical errors and the
vector potential is not well defined. Bx 5 2sin y, By 5 sin 2x, p 5 5/3,
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FIG. 8. Advection of a current-carrying cylinder. The initial conditions (top) and the advected results at time t 5 6.28 for the magnitude of the
magnetic field uBu (middle) and for the current density J 5 = 3 B (bottom) are plotted. Only one quarter of the full grid centered on the cylinder
is shown. The contour levels for uBu are 0.1, 0.2, ..., 0.9, and for J they are 20.9J0 , 20.7J0 , ..., 0.7J0 , 0.9J90 , where J0 5 2/15 is the initial current
density inside the cylinder. The negative levels for the current density are drawn with dashed contours. The average relative errors E with respect
to the exact solutions for uBu and J are indicated within the plots. The return current on the surface of the cylinder (initially one cell wide) cannot
be correctly advected by any of the methods, the contour lines inside the cylinder and the distortions are of greater significance.

and c 5 Gd. All numbers are truncated to six decimal places terms are not in a conservation form, the total momentum,
magnetic flux and energy seems to be conserved to a highfor the initial conditions, but the calculations are per-

formed in double precision. accuracy. This may be due to the symmetry of the problem
or due to the fact that the corrections are small and onFigure 9 shows contour levels for the thermal pressure

p after 300 time steps (600 for ETBFCT) corresponding average they tend to cancel each other.
to approximately t 5 3.1. It is quite reassuring to see that
all methods give similar results. For the non-MUSCL TVD 5. CONCLUSIONS
scheme it is necessary to make use of Powell’s [29] eight-
wave Riemann solver with the source terms proportional This paper is devoted to the comparison of various nu-

merical methods for simulations of hydrodynamic andto = ? B. Without the source terms the code crashed, except
with the minmod limiter. For the TVDLF scheme including magnetohydrodynamic problems. ETBFCT is used by

many researchers, it offers stability and sharp resolutionPowell’s source terms made little difference, but it im-
proved the FCT results significantly. Although the source for a relatively small effort in coding. It can be easily
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FIG. 9. Orszag–Tang vortex system. The thermal pressure is plotted with 15 contour levels after 300 time steps (600 for ETBFCT) corresponding
to approximately t 5 3.1. A cut at the 60th row of cells (at y60 5 1.9471 as indicated by a horizontal line) is shown below each contour plot. Results
are to be compared with the figure in [8].
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TABLE I YDFCT with C 5 0.8, and TVDLF and the non-MUSCL
TVD schemes with the Woodward limiter and C 5 0.8.Comparison of Performance and Some Features
The scores on the 1 to 10 scale, with 10 being the best and

Tests/Features ETBFCT YDFCT TVDLF TVD 1 complete failure, are subjective, but express our overall
impression. The relative computational speed and the

1. Square wave 8 9 8 8 other features listed at the end of the table highlight some
2. Semicircle wave 7 10 9 9

differences that cannot be seen in the plots of the test re-3. Blast waves 5 5 6 7
sults.4. Rarefaction waves 2 2 2 2

5. MHD shock tube 6 7 8 10 The occasional failures of some or all of the methods
6. Alfvén waves 7 6 9 10 described in this paper show the directions for further
7. Mach reflection 7 7 7 9 development. We found that Powell’s source terms propor-
8. Current cylinder 7 6 6 5

tional to = ? B improve the results for multidimensional9. MHD vortex 7 7 8 9
MHD simulations for all the investigated methods. Al-

Relative speed 4 8 10 7 though the source terms are not in a conservation form,
Independent of eqs. 1 1 1 2 and the error in = ? B is not eliminated by them, in the two
Simple to code 1 1 1 2 multidimensional MHD test cases studied here, and in all
Unsplit dimensions 1 2 2 1

other tests tried by the authors, the errors remained small.Implicit version 2 2 2 1
Conserving = ? B to a high accuracy may be crucial for
certain applications. The simplest remedy may be the use
of a projection scheme (Brackbill and Barnes [38]) to re-
move the numerically generated divergence of the mag-modified to YDFCT to speed up calculations and to im-

prove accuracy in some cases. Note, however, that YDFCT netic field after each step. One may also use the vector
potential as a variable with some spatially third-order TVDis restricted to a dimensionally split implementation, while

ETBFCT can be made fully multidimensional. TVDLF is method. Positivity of pressure and density may be ensured
by switching to some positively conservative scheme, likenot more complicated to code than the FCT algorithms,

and while it may be a bit more diffusive, often the smooth- HLLE, where necessary, or one may try to use non-linear
Riemann solvers to overcome these difficulties. Theseness of the solution more than compensates for that. It

may be best used in combination with FCT; the discontinu- modifications and improvements are subjects of future
work.ities are usually sharply resolved by the flux-corrected

transport schemes, while the spurious oscillations can be
identified when a comparison is made with the solution by ACKNOWLEDGMENTS
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